Lipoic acid analogs induce ROS, leading to potent mitochondrial enzyme
Inhibition, metabolic dysfunction and cell death in tumor cells
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Figure 1: Thioctoid structure. A. Two lipoic acid- containing enzyme complexes, pyruvate
dehydrogenase (PDH) and a-ketoglutarate dehydrogenase (KGDH), stand at major
regulatory points governing the flow of carbon through mitochondria. B. Biogenic forms of
lipoic acid and the active thioctoid lipoic acid analogs CPI-613 and CPI-1410. CPI-613 and
CPI-1410 are designed to mimic lipoate catalytic intermediates which regulate elements of the

PDH complex altered in cancer cell metabolism. Note the blocked sulfurs. (Figures 1A
modified from [1])
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Figure 2 : Thioctoids post-translationally modify tumor cell PDH and inhibit in vivo tumor
growth.

A. PDH Ela is regulated by the phosphorylation of 3 serine residues. Using phospho-specific
antibodies we see thioctoid induced phospho-inactivation of all 3 serines in H460 lung
carcinoma cells. B. 10mg/kg CPI-613 at 3 dosing regimens (black, green & red data points)
significantly slows tumor cell growth in mouse xenograft models compared to vehicle-treated
controls (blue lines). (Figures 2A, B from [2])
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Figure 3: Thioctoids alter mitochondrial carbon flux

A. Mitochondrial carbon flux was monitored using either 3,4-[14C]glucose (A) or 1-[14C]
glutamate (B) and quantifying [14C]CO; release. Thioctoids potently inhibit the lipoate-
containing enzymes PDH and KGDH in a dose- and time-dependent manner. C. Schematic of
the reaction quantified in (A). Carbons 3 & 4 of glucose become C-1 of pyruvate after
glycolysis and are released as CO; after decarboxylation by PDH. C-1 of glutamate is released
in an analogous manner by KGDH after conversion to 2-oxoglutarate.

Results

Glutathionylation of KGDH, PDH E2
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Figure 5: Thioctoids induce glutathionylation of KGDH E2 resulting in enzyme inhibition.
A. H460 lung carcinoma cells were treated for 3 hours with 240uM CPI-613 and
glutathionylation status was assayed via the biotin-switch method. The E2 subunits of both
KGDH and PDH are detected among glutathionylated proteins in CPI-613-treated samples
Glutathionylation is completely inhibited by co-incubation with the antioxidant NAC. B. in
vitro KGDH activity was monitored using the NADH-dependent reduction of non-fluorescent
resazurin to highly fluorescent resofurin. in vitro glutathionylation of KGDH by glutaredoxin
significantly suppresses the activity of the enzyme.
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Figure 4: Thioctoids induce mitochondrial-localized ROS.

A. FACS analysis of hydrogen peroxide-induced oxidation of redox-specific, cell permeant
dyes showing a large thioctoid-induced increase in cellular ROS levels which can be
scavenged by antioxidants (NAC, Tiron). B. Peroxiredoxins are a class of cellular antioxidants
that exist in both mitochondrial (Prx-III) and cytosolic (Prx-I) forms. Treatment with active
thioctoids results in an increase in the oxidized inactive dimerized form of the mitochondrial
Prx-III at early times. The dimerization of the cytosolic Prx-I & -II lag noticeably behind the
mitochondrial isoform (data not shown).

Conclusions

Tumor cell metabolism is emerging as a promising chemotherapeutic target. We have
previously shown that thioctoids inhibit PDH via phosphorylation[2]. Here we demonstrate
an additional inhibitory effect on the Krebs cycle enzyme KGDH via a ROS-dependent
glutathionylation mechanism. Thioctoids appear to target multiple lipoate-containing
mitochondrial enzymes and may in fact act as a ‘cocktail-of-one,” perturbing tumor cell
metabolism at multiple sites. These drugs are currently in human clinical trials and our pre-
clinical studies indicate that they may have unique promise.
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